
AO-AG95 070 HONEYWELL SYSTEMS AND RESEARCH CENTER MINNEAPOLIS MN F/ 1/
ADA15-7 r REAL-TINE FEASIBILITY FOR GENERATION OF NONLINEAR TEX7TURED TERR-EcTC(UW

JAN 81 D SOLANO, M VOTH. P NARENDRA F33615-77-C-0073
UNCLASSIFIED AFHRL-TR-7927 ML

NOIIIIIIE

IEEEIIIIIEIIIE
EIEEIIEIIEIIIE
IIhEEllllhhlEE

lI I It-I I T -79-27

AIR FORCE L
H

- M
A
N

R
E
S
0

R

E
S LA

AIR FORCE
BROOKS Al

. ")i, .4

NNhe I S. ;4% ,"1111,11drl i ," ' er l cllol'.oril o~. al a r ~(\Io .11 JlIIl ...I. w

11i,11i a i orilit-! u.rehIie . O 11imvi IIe g .or u ro ni~ op ai on.II'L l i Ito uuuoiiu..i-..

ho mitIaI H. hiriiih d ill- ill le~ial S irt 11114411lclt 4 irIl,.'oti il ol.m ofIr '

11 tia m il I oI at, g g d Ib it Il c t)f(o-Ii e % v.i f; l i f-rIi t f tI -iM .1

I I it- riii ~ i ll 4op ia til.o-i.il\4, ti 1 II~lti r n ~ m t n ll1 t 1 c .. 1

SECURITY CLASSIFICATION OF THIS PAGE (W471., Date Entered)

READ INSTRUCTIONS
('qEPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

- . REPORT'NAMER 2GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (aind SubelfI.J 5. TYPE 01- REPORT 6 PERIOD COVERED

S. PERFORMING ORO. REPORT NUMBER

7. AUTHOGR(&) B. CONTRACT OR GRANT NUMBER(.'

/0 111 /) 13301 i--(:-()-,3

9, PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRA M ELEMENT.' PROJECT. TASK

11ole~ull.S~svil, ad Reirvi CeterAREA8 &ORK U NIT NUMBERS

2(01H4 llidiN sIarkssws 11 4122 -1 F

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

11(iI ~rl Ill~l~llI(1lIIr~l. I..I~l~IIIIrS(I(I NUMBER OF PAGES

14 MONITORING AGENCY NAME & ADORESSrif different from, Con,roinj Ofie IS. SECURITY CLASS. (of thts reporl

XIlji n \ir For.~ III.. kriIIIII 8-)221 5I. DECLASSIFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of tl. Report)

Xp or~ II 111 ibIli(rlva.Iv: Il- illiill 11111

I7 DISTRIBUTION STATEMENT (of Ih. .b.f-tc ,nI.-d i~, R1.k 20, it diffI.-I from, R.poll)

I8 SUPPLEMENTARY NOTIES

19 KEY WORDS C-,fl,,on ,,, r-n , , .d.I a, Of 1 l bl~, blo..I no,h-

I-1111 iII~l,,

20 ABSTR AC 1- -1 .,ltr$ ' r3 t If I- ,. a~sr nd Idfl.Iv, bI,.A- k ,r.r

DD 'JANMO 1473 iIt ,11 1,11f wd_______~

SFCuR;TY CL ASSirICAT;ON OF 'THIS PAGE 1471- V- Fn10..I

I i1cassified
SECURITY CLASSIFICATION OF THIS PAGE("1., I.. E.Wo.d)

.1h approlach. lill'.lhl tit. di,.1 l.I 4i Ierralil as lllr'.l'li lriace replresenltedJ It bictiihil plim-s. Tvxlurv

vllem mo lIli- itia'. henii Il~~Ito liii'se IerraIn tiirface,. Bl~idlings tor Ilall-Ilade feature, lia' lit- uraitI lltii

pol'.g(Ila l races.

III re-aI-votpirIld 1.-atires mod rvqilire large- timlolr, iol edgeI. Ito dilia% cmil \. irregillar sucjlt h a, Ieraill.

Theirilnire. t[he cuirved tilrface appmriaIII mla% diiiionst rati. Ilidl alh.altagvs II.r iii, ftraight edige ItiI- hiu.

Il.Ili-ln

SECURITY CL ASSi FiC ATION OF THIS PAGEfWPI~n D*(. Entered)

CONTENTS

Section Page

I INTRODUCTION 7

II PROBLEM AND APPROACH 10

Bicubic Splines 12

Ground Plane Intensity Representation 14

Bicubic Surface Mapping Accession For 15

NTIS GRA&I k
III SYSTEM CONCEPT DTIC TA'- F1 21

Quad Tree Data Structure jt:ti'iciit -- 21

Priority Conflict Resolution 1 v 24
DJi trV!; t :,2

Scene Generation Avzlil: 24

Algorithm Details Dist 26

Projection of Node Corners 26

Count Display Points Covered 26

Texture Generation and Representation 29

Alternatives and Tradeoffs 30

Choice of Subdivision Coordinate Systems 30

Binary Versus Quaternary Subdivision 32

IV SYSTEM DESIGN 33

Real-Time System Approach 33

Requirement Analysis 34

Algorithm Options 37

J1

CONTENTS (concluded)

Section Pa ge

Number of Patches in FOV 39

Number of Patches N oeding Bicubic Subdivision 40

Total Nu:m r of Patch Subdivisions, N 40
s

Number o. Z-Buffer Accesses 49

Real-Time Implementation Requirements 57

Field-of-View (FOV) Memory

Register Square Processor

Register Square Stack 62

Patch Subdivider 07

Tester 67

Display Processor and 7-Buffer G67

Timing Analysis 75

V ('ONCI.USIONS AND 79COMMENI)ATIONS

APPENDIX A. HIC'UBI(" SPI.IN L INTI,HtI.OLATION 82

APPt;ENWIX 1B. I(' UBI(' SP' INE SUBI)IVISION 90

\ PT'-'LN1I X C. P1 [,II(11 I) A\II-:A)F A I-AT'I('I]
AT T111' L SC U .N 100

APPENDIX I). NM[3I1It O PO\T('tlS Nt,'1)IN;
BI(UHI:IC SI l)IVISION 106

2

LIST OF ILLUSTRATIONS

Figure Page

1 Terrain Image Generation Problem 10

2 Area Sampling 11

3 Terrain Imaging Geometry 12

4 Ground Plane Map of Planimetric Features 15

5 Mapping of Ground Plane Intensities onto Image Plane 16

6 Mapping of Ground Plane onto Image Plane 17

7 Nonlinear Textured Terrain Sequence Including Buildings 18

8 Nonlinear Textured Terrain Sequence 19

9 Pahramp Quadrangle, Nevada Series, USGS 20

10 Quad Tree Data Structure 22

11 Ground Plane Subdivision Process 25

12 Subdivision Algorithm 27

1:3 \ltcrnatives for Grid Test 28

14 Mairkovian Texture Synthr sis 31

15 !lasiu Svstrni Functions 35

16 ()verview of Detailed Requirements Specifications Task 31;

17 Two Options for Perspective Rendering 38

1 Ha Ilistograni of Patch "rilts .11

1 M) 1istokram of tU;tch Tilts 42

LIST OF ILLUSTRATIONS (continued)

Figure Page

19a Histogram of Patch Altitudes 43

19b Histogram of Patch Altitudes 44

20 Scatter Plot of Projected Area--Binary
(Quadrilateral Test) 46

21 Scatter Plot of Projected Area--Binary (Box Test) 47

22 Scatter Plot of Projected Area--Quaternary
(Quadrilateral Test) 48

23a Projected Area vs. Distance--e = 00 50
m

23b Projected Area vs. Distance-- 8 = 50 51m

23c Projected Area vs. Distance--8 = 100 52

23d Projected Area vs. Distance-- = 150 53
m

24a Comparison of Predicted and Measured
Projected Areas--e = 50 54

m

24b Comparison of Predicted and Measured
Projected Areas--8 = 10 55

24c Comparison of Predicted and Measured

Projected Areas--8 = 15° 56

25 Basic System Functions-- Requirements 58

26 Functional Elements of Register Square Pipeline Processor 59

27 Perspective Projection of Elevations 60

4

LIST OF ILLUSTRATIONS (concluded)

Figure Page

28 Pipeline Hardware Block Diagram
for Perspective Projection Stage 61

29 Bioubic Fit 63

30 Pipelined Bicubic Fit Block Diagram 64

31 Register Squares Prior to Subdivision 65

32 Register Squares Pipeline 66

33 Register Subdivision Equations 68

34a Subdivide Pipeline Part I 69

34b Subdivide Pipeline Part II 70

35 Grid Point Test 71

36 Max/Min Circuit as Part of Grid Point Test 72

37 Compute Intensity Pipeline 74

C-1 The Projected Area of a P.tch at the Screen 102

C-2 Imaging Geometry for the Worst Case 106

5

LIST OF TABLES

Page
Table

1 Parts Count for Pipelined Approach 76

107

C'1 Area vs.
1

m

SECTION I

INTRODUCTION

The purpose of this study was to determine the real-time hardware
requirements for computer generation of nonlinear textured terrain imagery.

The approach is based on algorithms and software developed by Honeywell
under an Independent Research and Development (IR&D) program. This
software was implemented on the Air Force Human Resources Laboratory
(AFHRL) Simulation Training and Advanced Research System (STARS)
computer facility for nonreal-time generation of imagery during Phase I

of this program. The quality of the resulting imagery was considered
sufficient to warrant an investigation of real-time hardware requirements
during Phase II. This report discusses that investigation.

This effort is part of a larger AFHRL program to apply computer image
generation (CIG) to techniques for use in visual and electro-optical (E/O)
sensor simulation systems for trainer systems. Emphasis on low-level
flying and the need to incorporate training for target detection and identi-
fication tasks places new requirements for realism in these simulations.
Previous studies have established the applicability of CIG technology to
visual and E/O sensor simulation and have developed algorithms for the
simulation of atmospheric effects and sensor transfer characteristics.
These studies were based on existing CIG techniques which use polygonal
representation of surfaces. Smooth shading techniques were incorporated
for added realism.

Polygon methods are not readily extended to include texturing of surfaces.
Furthermore, the computational requirements for polygonal terrain
representation would be considerable. Although smooth shading can reduce
or eliminate facetting effects i'n the interior of objects, silhouettes and
boundaries are still composed of straight line segments which detract from
the realism of the simulation.

The alternative approach which is the basis for this study represents
surfaces as collections of curvilinear, bivariate patches. In general, any
surface in three-dimensional space can be represented as a function of two
variables. For example, a terrain surface is determined by elevation
above some datum. The two independent variables represent coordinates
in the datum, or ground plane. Other bivariate functions, representing
surface material, texture, etc., can be defined with resp2ct to the same
coordinates, thus allowing texturing of surfaces.

7

The particular representation used here for terrain is the bicubic surface
patch, a polynomial approach which has recentLy received extensive develop-
ment for use in computer-aided design of surfaces. The bicubic patch
representation has first or second derivative continuity across patch
boundaries, depending on the particular bicubic representation used (see
Appendix A). Consequently, smooth shading and curved silhouettes and
boundaries are inherent in the approach.

The generation of a perspective view of a surface consisting of bicubic
patches, as required for visual and E/O sensor simulation, requires
different methods than those used for polygon surfaces. The method used
here is the bicubic subdivision method of E. Catmull. I] Catmull's method
is a fast, recursive subdivision of the patch into smaller and smaller sub-
patches, until each subpatch is small enough to be displayed. Because the
order in which the subpatches are ready for display is random, the usual
scanline approach in which the imagery is produced a line at a time in
synchronism with the raster scan of the display is not applicable. Rather,
the image is assembled in a special memory called a frame buffer.

The frame buffer contains the entire image at display time and is scanned
out in raster sequence. Catmull extended the frame buffer concept, originally
proposed by M. Newell, [2] to include the distance from the viewpoint to each
displayed point. The extended frame buffer is called a Z-buffer, which
provides a simple solution to the hidden surface problem by resolving
conflicts based on distance from the viewpoint.

The Z-buffer also includes the following advantages. Computing requirements
increase only linearly with scene complexity. For other priority algorithms,
computing costs increase faster than linearly with, say, the number of edges
required for the scene. Also, different and more suitable object represen-
tations may be used within the same system. For example, bicubic patches
may be used for terrain, polygons for buildings, and quadratics for storage
tanks and water towers. Since distance to each picture element is available,
atmospheric propagation effects can be included by table look-up at display

[1]E. Catmull, A subdivision algorithm for computer display of curved

surfaces. UTEC-CSc-74-133, University of Utah, December 1974.

[2]Newel, M. E., Newell, R. G. and Sancha, T. L. "A Solution to the

Hidden Surface Problem, " Proc. ACM Nat. Conf., August 1972.

8

time. Finally, since the n-ighbors of each picture element are available,
two-dimensional interpolation and a form of anti-aliasing filtering are
easily incorporated.

In order to study the Honeywell approach to CIG, AFHRL at Wright-
Patterson AFB contracted with the Boneywell Systems and Research Center
for a software implementation of the algorithm for evaluation. Under Phase I
of contract No. F33615-77-C-1173, "A Study of Real-Time Feasibility for
Generation of Nonlinear Textured Terrain, " Honeywell transferred a working
version of its CIG software and data to the AFHRL facility at Wright-Patterson
AFB, Ohio. Under Phase II of this contract, Honeywell defined the real-time
hardware organization required to implement the algorithm. The study
established the requirements using a combination of analytical methods and
computer simulation, analyzed several system configurations, and performed
a detailed study of memory and computational devices required. This report
covers the technical effort for Phase II of the contract.

II

SECTION II

PROBLEM AND APPROACH

The Honeywell CIG approach combines several innovative idcas. These
include using a frame buffer and depth buffer to assemble the components
of a scene, using curved surfaces instead of polygons for terrain represen-
tation, applying texture patterns to the surfaces, and using polygons to
represent cultural objects in the same scene.

The basic elements of the CIG problem for terrain are shown in Figure 1.
They consist of a viewpoint represented by an eye, a "window, " the terrain,
and a line of sight (LOS). The window may be an actual window in the case
of visual simulation, or the focal plane in the case of a camera such as
forward-looking infrared (FLIR) or low-light-level television (LLLTV)
camera.

In simulator visual systems, the window is replaced by a cathode ray tube
(CRT) or similar display device with suitable optics to provide a virtual
infinity image at the viewpoint. The scene viewed through the window is
synthesized by computer from a data base. The data base consists of
terrain elevation samples and descriptors of the material at the surface
of the ground as a function of geographical coordinates.

Figure 1. Terrain Image Generation Problem

10

!A

The synthesized image consists of a rectangular array, or raster, of intensity
samples. The intensity or color displayed at a particular raster element is
determined by the material characteristics (reflectance, emittance, temper-
ature, etc.) of the first surface intersected by the LOS from the viewpoint
through the raster element. It is also determined by illumination, surface
orientation, and attenuation along the LOS. For FLIR and LLLTV, the
displayed intensity depends also on camera resolution, sensitivity, and
noise characteristics.

The raster element should not be considered as a point, however, but as
a small element of area on the display. The solid angle determined by the
viewpoint and the raster element will intersect the terrain over some patch
of terrain (Figure 2). The patch is the projection of the raster element
onto the terrain surface. The area of the patch will vary with distance
and obliquity of the surface.

The displayed intensity is determined by the average brightness over the
path and not by the brightness at a point, as suggested by Figure 1.

Required, then, are algorithms for sampling for average brightness of the
ground patch corresponding to each raster element within the field of view.
As the viewpoint and orientation of the window change, the projection of
ground patches on the display window will change accordingly. The
algorithms must be computationally simple enough to allow for real-time
tracking of these changes with realistic hardware speeds.

Figure 2. Area Sampling

11

BICUBIC SPLINES

Bicubic splines provide a smooth polynomial interpolation of the terrain
elevation samples in the Defense Mapping Agency (DMA) source data.
Each spline approximates a patch of terrain overlaying a rectangular area
in the ground plane (Figure 3). The ground plane in this sense is an
arbitrary horizontal datum plane. A Cartesian coordinate systen is
defined with the Z axis aligned vertically and the X and Y axes aligned
east and north, respectively, with origin directly beneath the aircraft in
the ground plane. The terrain patches then correspond to the latitude/
longitude grid of the DMA source data.

The patch boundaries are intersections of the four vertical planes along the
latitude/longitude grid lines with the terrain surface, and are usually curved
due to the bicubic representation. The projections of these curves onto the
window are also curved. Consequently, unlike polygon representations,
the four vertices cannot simply be connected with straight lines in the
window plane to determine the imaged patch boundaries. The approach
taken here is to subdivide the patch until the resultant subpatches each
cover one picture element.

AIRCRAFT VIFWPOINT

WINDOW

PROJECTIMl OF TERPAI%
PPTCH n'i t4r pnfw

r' RIP LI'JIS

TLPRAIN PATCH

rpnLiw PL A[

Figure 3. Terrain Imaging Geometry

12

A bicubic spline provides a polynomial representation of terrain elevation
z of third degree in x and y which can be written as

2 2 2 3 3
z = ao +a 1x +a 2 y +a3x +a 4 y +a 5 xy +. " +a15 x y

A bicubic has 16 arbitrary coefficients which are determined by a minimum
of 16 terrain elevation samples. The simplest approach uses the four
corner elevations for the patch and the neighboring 12 elevation samples.

The bicubic coefficients can be simply determined by arranging the 16
elevations into a 4 x 4 matrix 7 and then pre-multiplying and post-multiplying
Z by a 4 x 4 matrix of constants, W, and its transpose, respectively.
Appendix A discusses bicubic spline mathematical properties in more detail.

Depending on the choice of M, a bicubic may be either interpolating or
approximating. An interpolating spline surface, which has first derivative
continuity, is one which fits the true surface at the four corners of the patch
and interpolates the surface elsewhere. An approximating spline, which
has second derivative continuity, approximates the surface everywhere.

In either case, the resulting surface is smooth with at least first derivative
continuity everywhere, including along patch boundaries. Thus, the normal
to the surface is continuous. This is important because shading of surfaces
depends on the angles between the surface normal and lines to the viewpoint
and illumination source. The human eye is very sensitive to spatial dis-
continuities in shading, even in the first derivative of shading; therefore,
discontinuities in the surface normal may be discernible. The effect might
be particularly objectionable, and in fact may provide false cues to the
trainee, in real-time visual simulation, if the discontinuities appear to
jump or crawl as the angles change.

Special interpolation techniques have been developed to reduce these effects
when representing rcrved surfaces by polygons. Examples are Gouraud[ri]

shading and Phong L shading. An advantage of bicubic spline representation
of surved surfaces is that the necessary continuity is inherent in the approach.
No smoothing approximations are necessary.

[3]Gouraud, H. "Computer Display of Curved Surfaces, " Dept. Comp.
Science, U. of Utah, Tech. Rept. UTEC-CSc-71-113, June 1971.

[4]Phong, Bui Tuong, 'Illumination for Computer-Generated Images, " Dept.
of Comp. Science, U. of Utah, Tech. lept. UTEC-CSc-73-129, July, 1973.

13

Bicubics are the splines of lowest degree which have this property. Although
biquadratic splines require fewer coefficients, they cannot provide the
desired degree of continuity. This is the principal reason bicubic splincs
were chosen for terrain representation.

GROUND PLANE INTENSITY REPRESENTATION

The previous subsection dealt with the mathematical representation of terrain
for CIG. The terrain can best be represented by bicubic spline functions;
these are bivariate polynomials determined by the data base terrain elevation
samples. The bicubic representation was chosen for its smoothness properties.

The other half of the DMA data base consists of planimetric features which
can be represented as a map in the ground plane (Figure 4). Each surface
material (concrete, grass, rock, sand, etc.) is represented by a code as a
function of latitude!longitude grid coordinates. From this data, a map like
that of Figure 4 can be constructed to the resolution level of the data base.
Such a map can also be made from any two-dimensional intensity or color
distribution such as a photograph or sensor image. Aerial photographs
and random patterns were used in the Phase I software implementation.

It is possible to assign an intensity (representing reflectance, emittance,
or other material characteristics) to each surface material. Each intensity
can be mapped from the ground plane to the image plane by mapping the
curved terrain surface onto the image plane (Figure 5). The mapped
intensity value can then be modified for illumination, temperature,
atmospheric attenuation, noise, etc. to give the displayed intensity.

The ground plane intensity values can be specified to any desired spatial
resolution. In particular, this concept allows texture to be specified in
the ground plane for each terrain material and mapped onto the image
plane with correct perspective, occlusion, and variable resolution with
distance.

Texture in images can be described as a quasi-periodic or random variation
of intensities which gives a surface a particular character. The surface is
then perceived as tree-covered, or as a plowed field, etc., by the viewer.
Perspectively correct texture can also give the impression of distance,
surface slant, and motion. Consequently, texture should add significantly
to realism and depth and motion cues in CIG.

14

Trees and gra s [luil dings

Figure 4. Ground Plane Map of Planimetric Features

BICUBIC SURFACE MAPPING

The approach described here for CIG using bicubic spline terrain represen-
tation is based on Catmull's bicubic spline subdivision algorithm. The
algorithm is described in detail in Appendix B.

Figure 6 illustrates a mapping of a patch onto the image plane and two
successive stages of subdivision. The original patch corners are denoted
A, B, C, D. The projection of the patch boundary curves are shown
connecting these points. Catmull's algorithm provides the new boundary
curves for the binary subdivision of the first patch.

15

Lim.

Figure 5. Mapping of Ground Plane Intensities onto Image Plane

16

I'rojuct.d (irold 11 ari Grid

Rlaster l-h'nLi'lits -- /

Figure 6. Mapping of Ground Plane onto Image Plane

Each bicubic patch is successively subdivided into four subpatches until
each of the resulting subpatches, when projected onto the image plane,
occupies the area of one raster element. The visibility of each such sub-
patch is determined and the corresponding intensity displayed. Because
the image is constructed in a scatte: 'ed fashion, a frame buffer is used to
assemble the picture prior to display. If distance to and intensity of each
subpatch is stored in the buffer for each raster element, the visibility
determination is greatly simplified. This concept is called a Z-buffer.

Several sequences of scenes have been generated to demonstrate the capa-
bilities of the program. Figure 7 shows successive views of one corner
of a data base including some buildings on the terrain. Figure 8 is a
series of views of a more mountainous portion of the data base.

The data base environment for Figures 7 and 8 consists of a hilly area of
southwest Nevada. The rectangular region represented is about 5 km per
side with the origin at the southwest corner of the rectangle. This region
can be seen on the U. S. Geological Survey (USGS) topographic map,
Pahramp quadrangle. The origin is at approximately 115 deg 53 min W,
36 deg 12 min N. Figure 9 shows the boundary of the data base area.

17

18

C-

7.

C.)

C

F-

CC.

1 9

-L

b. - -

J \ I

'..d

-JA\.

~~~~~ ---- ~ - ~---- -

-- (L

low-

VM ' lot"

2 ~20



SECTION III

SYSTEM CONCEPT

In this section, the algorithms selected for the real-time system feasibility
study will be described. Alternative algorithms which were considered are
also discussed, along with the rationale for the selection which was made.
Functional requirements for the system approach will also be described.

QUAD TREE DATA STRUCTU13E

The basic approach is an outgrowth of two ideas. One is t( use a ,-buffer
to assemble components of a scene. The second is to use a tree structure
to represent the terrain data; the root node of the tree represents a square
containing the entire geographical area for the mission. Each node below
it in the tree represents a smaller area and thus a higher level of detail.
Figure 10 illustrates this quad tree structure and the manner in which it
represents increasing level of detail in the ground plane.

The algorithm involved in creating a picture is a tree scan. It is not a tree
search for some particular predetermined elements but a scan of as many
branches as are needed to find those nodes which represent each pixel on
the display screen. Of course, a data structure containing all possible
pixels is much too large to implement, so the lowest nodes in the tree, the
terminal nodes or leaves, are representations of curved surface patches.

The ground area represented by each terminal node is determined b\ the
resolution inherent in the terrain elevation data base. For the scenes
depicted in Figures 7 and 8, each terminal node represents a ground patch
of approximately 100 meters on a side. Parents of the ferminal nodes
represent patches of four times as much area, the next level of nodes 16
times and so on up the tree. Thus, each node represents a quarter of
the area in the ground plane represented by its parent node.

Each node in the tree carries the following data about the surface area it

represents:

* Flag to indicate terminal or non-terminal node

* X and Y coordinates of a specified corner of the patch

* Length of the sides of the patch

21



Figure 10. Quad Tree Data Structure

Non-terminal nodes also carry

* Elevations at each of the four corners of the patch

* Intensity (average of the intensities of the four subnodes)

* Pointers to its four subnodes

22



Terminal nodes carry

* A 16-entry array which is a bicubic representation of the
surface

2k 2k
* A texture map for the surface. The map is an 2 x 2 array

of M bit intensities (for Figures 7 and 8. k = 3 and M = 3)

The tree is scanned in depth first order. That is, the algorithm steps
through the three from node to node, beginning at the top, or root node.
Nodes near the top represent large ground areas whose projections on the
display screen will depend on distance from the viewpoint. Projections
of nearby nodes will cover many pixels, so the tree must be scanned to
greater depth for nearby nodes. Distant nodes will project to smaller
picture areas and the scan depth will be less. This feature provides an
automatic level of detail selection as well as minimizing the computational
effort in producing a picture.

The procedure for generating a picture, then, is as follows. Starting with
the top node, the picture area corresponding to the node is determined by
projecting the four corners of the patch represented by the node to display
screen coordinates. A decision is made to terminate the scan at that node
or proceed to the next level. Termination can occur under the following
conditions:

1. The projected area represented by the node falls outside the

display window.

2. The projected area faces away from the viewpoint.

3. The projected area is small enough to display.

The result of any of these conditions is to terminate the scan at that node
and discard all branches and nodes below the termination node. When the
entire tree has been scanned in this manner, the result is the identification
of all potentially visible nodes, each node representing a pixel-sized area
on the display screen, and the corresponding display coordinates. However,
some of the potentially visible nodes will be occluded by other nodes. The
priority, or which nodes are actually visible, can easily be determined by
comparing the distance from the viewpoint to each node where priority
conflicts occur.

23



PRIORITY CONFLICT RESOLUTION

The resolution of priority conflicts uses a combination of a frame buffer
and depth, or distance, buffer called a Z-buffer. The frame buffer holds
the intensities or tones of display points as they are generated. The depth
buffer stores the distances of these same points and resolves priority
conflicts by keeping only the nearest point (both intensity and distance) when
conflicts occur. An added benefit of this approach is that when the frame is
displayed, the distance to each pixel is available for intensity modification
due to haze, fog, or other atmospheric attenuation.

SCENE GENERATION

The first step required to produce a picture or a sequence of pictures of
the terrain is data base preparation. This step consists of building the
data tree structure with the data elements described above. This step may
be considered to be a restructuring of the DMA terrain elevation samples,
augmented by texture data. The texture samples should conform to the
DMA cultural file to represent the various terrain materials and their
boundaries. Since the scene generation algorithm under unvestigation in
this study does not depend on how the texture arrays are actually generated,
details will not be described here. The textures in Figures 7 and 8 were
produced by digitizing aerial photograp,'s of the terrain being represented.
This technique is only one of several th, t might be used.

The second step is to produce a skeleton tree for the present field of view,
depending on viewpoint location, direction and angular extent of the field
of view. The skeleton tree is a thinned out tree that contains pointers into
the full mission data tree but has been pruned to include only surfaces in
the current field of view. This step is repeated for each new frame. It
is not necessary, but can substantially reduce the size of the tree to be
scanned if the field of view is much smaller than the total mission area.
The pruning is accomplished simply by projecting the field of view onto the
ground plane and discarding those nodes which are completely outside the
field of view boundaries.

The terrain surface gets processed a node at a time, starting with the root
node of the skeleton tree. The depth buffer is initialized to a large value.
The following steps get repeated until no nodes remain to be examined.

24



1. Fetch the next node. If none remain, the picture is ready for

display. Exit.

2. Project the corners of the node to viewpoint coordinates.

3. Count the number of display points covered by the projected node.

4. If this is a terminal node and there is more than one point
covered, subdivide the node (Figures 11, 12) and go to step 1.

5. If there are none, stop searching this branch of the tree and
go to step 1.

6. If there is only one and it is behind the viewpoint, discard the
node, stop searching this branch and go to step 1.

7. Compare the node distance to that currently stored in the depth
buffer at the covered display point. If greater, discard the node,
stop searching this branch and go to step 1.

F

L -- -- -- -it i

LI~ I I

L _-.J L _Ji I_ L_ _

Figure 11. Ground Plane Subdivision Process

25



8. Compute the displayed intensity for this node, store it in the

frame buffer, and store the node distance in the depth buffer.

9. Go to step 1.

This process will execute a depth-first search of the skeleton tree and
assures the examination of every relevant node. Any visible surface in
the field of view gets written to the frame buffer.

ALGORITHM DETAILS

This subsection describes the algorithms used in Steps 2, 3, 4 and 8.

Projection of Node Corners

The corners of a node are known in ground coordinates as obtained from
the DMA terrain elevation file. To determine the position of a patch on the
display the four corner coordinates are translated and rotated into the
viewer's frame of reference and projected to display coordinates.

Count Display Points Covered

To know whether to stop searching some branch of the tree, the number of
pixels covered by the projected patch mu,-t be determined. If two or more
pixels are covered, the node must be subdividcd. The projected patch is
approximated with a quadrilateral whose vertices are the four projected
corners (Figure 13b). The number of pixel points within this quadrilpteral
is then counted. Another method is to count the grid points in a "box"
determined by the vertices of the quadrilateral (Figure 13c). These methods
of determining the size of the projected area are evaluated in the tradeoff
studies described in Section IV.

For non-terminal nodes, subdivision occurs naturally as a result of contin-
uing the depth first tree scan. For terminal nodes, a bicubic representation
of the patch is maintained known as a register square. Register square
subdivision is described in detail in Appendix 13. Briefly, the bicubic
representation of the four quarters of a whole patch can be generated from
the register square of their parent with a small number of shift and add
operations. Each quarter can then form a new register square for further
subdivision if necessary. Textural information is subdivided in parallel
with evaluation.

26

w .3



START

PUSH ALL PATCHES
IN FOV ONTO

STACK

DONESAC

NO~(1.Sbivso loih

PATCH ISIBL7



/ /

a) PROJECTED PATCH b) QUADRILATERAL c) BOX

Figure 13. Alternatives for Grid Test

The point intensity calculation uses some preset constants, the textural
value of the subdivided patch, the distance of the patch from the viewer,
and three vectors: the patch surface normal, the line of sight from the
viewer to the patch, and, for visual scenes, a ray from the sun to the
patch. Haze is an exponential function of distance. The intensities of the
back sides of illuminated areas are thresholded with an ambient intensity
constant. The point intensity computation is as follows:

T - Patch texture value
p

T - Texture weighting factorw

IA  - Ambient intensity

Z - Distance of patch from viewpoint

H - Haze decay factor

IH  - Intensity of haze

S - Surface normal vector

L )S - Line of sight vector

-4
SUN - Sun vector

28



R is the dot product of the surface normal vector and the line of sight vector
times the dot product of the surface normal vector and the sun angle; this
product is thresholded by the ambient intensity.

-4 -4 -4 -4

R max (I A SN - LOS * SN * SUN)

T =T .R T + R * (1.0- T
w p w

I = point intensity T e ZH + I H  e - ZH

Texture Generation and Representation

The DMA data base specifies 13 classes of texture (surface materials) in
various bounded areas (or as a percentage of cover). The generated texture
information must be added to enhance the data base. Texture functions can
be generated either by actual aerial photographs of a given texture, actual
terrain data or by computer synthesis.

Texture Function from Aerial Photographs- -The texture function to modulate
the diffuse component of the intensity model may be generated with aerial
photographs of the texture. It may work well for planar texture only (when
only the "pigment" of the surface is textured) as when representing grass,
gravel, etc. However, the digitized photograph of a three dimensional
(nonplanar) texture (bumpy terrain or trees, for example), fails to simulate
the appearance of real texture, because the viewing angle and light source
direction of the original photograph is very rarely the same as that of the
real-time simulation.

Texture Function from Actual Elevation Data--Texture functions for modu-
lating the surface normal can be derived from physical elevation data just
as the aerial photos generated the pigment function above. Examples are
terrain wrinkles, bumpy surfaces, trees in clumps, etc. This terrain
detail may or may not have any 2orrespondence with the real terrain texture
in a given gaming area. The surface normal function can be computed
directly from elevation data.

29



Synthetic Texture Function Generation--Synthetic texture functions have
the potential of saving storage (if real-time synthesis is achieved) of the
texture function. Texture function synthesis can be either deterministic
or probabilistic. A trivial example of deterministic synthetic texture is a
"cultural" texture generated by an orderly (predetermined) array of blocks
representing buildings. This can be either planar (painted on the surface)
or three dimensional and used as the surface normal texture as well. The
problem with this is the need to store a large number of different texture
maps--otherwise all "towns" would look identical,

Probabilistic texture synthesis allows the random generation of texture
subject to a given set of constraints. Simplistically, in the above example,
the houses may be required to be in blocks but their spacing and size may
be chosen from a random number generator.

Autoregressive Texture Synthesis--Probabilistic texture synthesis works
for natural textures as well (perhaps better than in cultural textures). This
is based on the fact that texture functions can sometimes be modeled by an
autoregressive function driven by white noise. Honeywell has investigated
this Markovian texture synthesis under its ongoing IR&D effort. The block
diagram in Figure 14 illustrates this technique. The coefficients of the
autoregressive function determine the texture pattern. The coefficients
can be determined from a sample of the texture being simulated (say from
a piece of an aerial photo). If the texture can be adequately modeled by the
autoregressive function, the synthesized texture can look remarkably like
the original texture. An additional bonus--the synthesized texture can be
of arbitrary extent without repeating itself (as in certain "tiling" schemes).

Tremendous data compaction can be achieved if texture is represented and
synthesized this way in real time. The only storape require'd is for threc
coefficients for a first order two-dimensional generatinp function, and the
initial values for the filter.

ALTERNATIVES AND TRADEOFFS

Choice of Subdivision Coordinate Systems

The princip I choice to be made is -whether to s ul)i vi lte therra'li 11 )atches
in the gr('und-based coordintt( sy :.tem or ir the n iovi n , ,rrdinat,' ,\,t
centered at the viewpoint, i. ,. , in obj.ct spac or im;' . If the
subdivision i:l done in the ground-based coordinates, th, r,,ultinp sulipatch

• 0



SAMPLE COPT SOLVE FOR
W DIGITIZE AUTOCORRELATION 8i . 2

IMAGE IH

a) Estimation of the Model Parameters

_ PSEUDO-RANDOM DIFFERENCE

2 1NOISE EQUATO SYNTHESIZED
GENERATOR EIMAGE

b) Synthetic Texture Generation Process

Figure 14. Markovian Texture Synthesis

corners must be projected at each node during the tree search. An advantage
to this approach is that the register squares can be generated off-line and
stored as part of the data base.

The image space approach requires that the register squares be computed
for every fra ne in real time. Only the patch corners are projected,
resulting in far fewer multiplication operations. For this reason, the image
space subdivision approach was selected. In image space, the terrain is a
three-dimensional vector parametric surface, so that three functions must
be subdivided simultaneously. For the ground-based approach, only scalar
subdivision is necessary.

Another interesting variation would be to perform the subdivisions off-line
in the ground-based coordinate system. The tradeoff is clearly one of
increased memory requirements for off-line subdivision versus increased
computation for on-line subdivision. Since the ground-based subdivision
was not selected for the real time feasibility study, this trad( off was not
performed.

31



Binary Versus Quaternary Subdivision

Quaternary subdivision is the four-way subdivision shown in Figure 11.
An alternative is to divide the patch into two subpatches, rather than four,
which can be called "binary" subdivision. After projection to the display
coordinates, a patch may be elongated since patches become more fore-
shortened with distance from the observer in one direction (along the LOS)
than the other (perpendicular to the LOS). In that case, fewer subdivisions
are needed if the patch is always divided along its longest projected dimen-
sion. This tradeoff was done and results are described in Section IV.

32



SECTION IV

SYSTEM DESIGN

REAL-TIME SYSTEM APPROACH

The primary objective of the study was to investigate the feasibility of
implementing the bicubic spline subdivision approach in real time for
simulators and similar applications. This was done by performing a
detailed requirements analysis and system design at the functional level.

Figure 15 shows the basic functions required in the real-time system. Data
for the simulated mission, consisting of terrain elevations and ground plane
texture are stored on some mass storage device such as disc. As the air-
craft moves over the terrain, data for the patches within the field of view
(FOV) of the aircraft are transferred to the FOV memory. The FOV
memory can be visualized as a window which moves across the terrain
with the aircraft. The size of the window is determined by the range of
maximum visibility.

The FOV memory is organized as a toroid with a relatively slow input port
and a high speed output port. For each frame, the contents of the FOV
memory are scanned and processed to generate the displayed image.

The first processing steps are referred to as the Register Square Processor.
This processor provides the following functions:

Transforms terrain data from geocentric to eye-centered
coordinates with x and y axes parallel to the display x and v axes

* Projects terrain sampics onto image plane

* Determines which patches require subdivision

* Computes bicubic register square values for each patch
in the FOV

The register square values for each patch are the data necessary for patch
subdivision. These ai e stored in a buffer memory which is organi7,,d as
a stack.

33



The contents of the stack are subdivided by the Patch Subdivider. Each
patch subdivision results in four subpatches. Each subpatch has the same
data structure as the parent patch. The subpatches are tested to see if
they can be written into the Z-buffer by the Display Processor. Those
patches which must be further subdivided are added to the stack.

The Display Processor determines the intensity or grey level and distance
for each displayed point and writes them into the Z-buffer. The Z-buffer
consists of a frame buffer which stores the pixel intensity values and a
depth buffer which contains the distance to each displayed point. When
priority conflicts arise, the distances are compared by the Display
Processor and the closest point is written into the Z-buffer. The frame
buffer is finally scanned in raster fashion to display the picture.

REQUIREMENT ANALYSIS

In order to specify the computations and memory required for each of the
functions shown in Figure 15, it was necessary to perform a detailed
requirements analysis.

An overview of the approach to this task is shown in Figure 16. The general
philosophy is to characterize the computational requirements of each of the
algorithm stages analytically as functions of the flight, sensor and terrain.
This characterization serves several purposes:

It helps understand explicitly how each parameter affects the
computational requirements of each stage of the algorithm.

* It enables the prediction of the performance requirements for
varying flight sensor and terrain parameters; the analysis is
not restricted to a given sensor and mission.

* The computer simulation does not have to be run for all
possible cases. This is prohibitively expensive besides
yielding little insight into the behavior of the system under
varying conditions.

The approach has been to divide the requirements analysis problem into
two parts--the geometry-dependent part and the algorithm-dependent part.
The former is amenable to mathematical analysis and allows direct use of
all the flight, sensor, and terrain parameters. The algorithm-dependent
part is harder to quantify analytically. but a few runs of the simulation on

34



L
I--

L/)

I-A

CDC

= V)

v))

L)=

- X

C)

LV) ci:L
C C13



z 

' I - D

U) U)

C)- OD C) ~
m U) aU

C,

Q.-

C:)

CC
at,

tU ) U

La 'X~Z La

< a -

U) 0

32La2

L-U



a limited test data set have provided statistics on the algorithm performance

for each algorithm option. The results of these statistics have been

combined with the analytically derived equations for the geometry-dependent
part to yield the detailed requirements for each algorithm. These detailed

requirements are explicitly parameterized in terms of the flight, sensor,
and terrain parameters.

Algorithm Options

Two alternate approaches to the perspective mapping function (Figure 17)
were considered. They are projection before subdivision and projection
after subdivision. The computational requirements trade-off between the
two approaches suggests the former over the latter, as discussed in

Section III. The detailed requirements were, therefore, derived for the
projection before subdivision approach.

An alternative approach to patch subdivision- -adaptive binary subdivision--

was devised, as described in Section III. A simpler "box" test was also

investigated as a grid coverage test in lieu of the quadrilateral coverage
test. These have been incorporated into the simulation software. Three

versions of the computer simulations now exist: (a) binary subdivision
with quadrilateral test, (b) binary subdivision with box test, and (c)

quaternary subdivision with quadrilateral test, the version on STARS.

The processing and computation required to display a patch is a function of

the projected area of the patch on the screen. Analytical equations were
derived (see Appendix C) for the projected area of a patch as a function of

the patch distance, the observer height from the patch and a measure of

the terrain "roughness. " The analysis indicates that the processing required
to display rough terrain can be nontrivially greater than that for flat terrain.

The equations form the basis of the requirements analysis and were verified

by simulation.

The processing required to display a patch as a function of its projected

area on the screen was quantified for each of the three versions of the

terrain representation simulation. To this end, the three versions were

run with a sequence of patches at varying distances and orientations from
the observer. Several statistics were gathered and analyzed through

histograms and scatter plots. In particular, the orientation dependence
of the patch subdivision process (binary vs. quaternary), the relative
efficiency of the box test vs. the quadrilateral test, the number of sub-

37



ix a

LAJ ixL.

u--

C) Lo
LJ 1- 3tm4)L

-~-0

L) ) Q.)

Do a Q.

0
0

InH
F-z L~,

U, - - I.

>. .= c
co 

'D
v)

44
&L.j

I- - . L.j

%na -Cc

a.co

38

- -- -- - - -- -



divisions, coverage tests, intensity computations, and frame buffer accesses
per patch as a function of the projected area of the patch were quantified.

A terrain roughness model was developed. This model directly applies to
the non-linear terrain representation approach. In this model, terrain
roughness is quantified by two parameters: (a) the average slope of a
terrain patch, and (b) the standard deviation of the elevations of the patch
corner points. The roughness parameters have been explicitly incorporated
into the projected area equations. A computer program was written to
evaluate the terrain roughness statistics from sections of the DMA data
base in order to quantify the roughness parameter values for representative
terrain types.

An equation was also derived for the distribution patch distances. In
combination with the equation for projected areas, the distance equation
provides the total projected area as a function of the visual or sensor FOV
and the distance to the farthest patch to be mapped. These equations,
together with the simulation runs giving the statistics of the algorithm
performance, predict the number of times an operation has to be performed
at each stage of the process as a function of sensor, flight, and terrain
parameters. The critical parameters are:

" Number of patches in the FOV

* Number of patches which need bicubic subdivision

* Number of bicubic subdivisions

e * Number of Z-buffer accesses

Number of Patches in FOV

Number of patches in the FOV is given by the equation:

* (It 2 2 ) It2 2
P H 2 2 2

2h 2  2h2

where *H is the horizontal FOV (in radians) of the sensor being simulated;

t2 is the distance to the "horizon, " the farthest patch being mapped; and
h is the patch size on the ground.

39



Using a nominal *H = 600, '2 = 15 miles and h = 300 feet, the result is

P = 36, 000 patches in the FOV.

Number of Patches Needing Bicubic Subdivision

The idea here is that not all patches which require subdivision have to be
subdivided using the bicubic subdivision. If the projected patch area is
small (for example, <n, a threshold), then the register square computation
can be eliminated, and processing proceeds directly to the patch subdivision.
The subdivision on these patches would then be simply linear interpolation.
Thus, the expensive bicubic fits and register square computation on these
patches are not required. The number of patches requiring bicubic sub-
division is given by:

2 em 2B - n
m mr *H

Here m is the area of a patch in display grid points beyond which it requires
bicubic subdivision;2 em is the terrain roughness parameter (the average
patch slope), and n is the total number of raster points.

The patch tilt e and the patch altitude were histogrammed for two sections
of the DMA data base (Nevada). One was a large 100 km x 100 km section
and the other was the mountainous 5 km x 5 km section that was used for
image generation examples. These histograms are shown in Figures 18a,
18b, 19a, and 19b. It can be seen that the average 6, em. for the mountainous
terrain is about 100; this is the value used in the worst case example for the
requirements analysis.

Assuming 9m = 100 (rough terrain), n = 1000 (high resolution display), and
m = 10, Bm " 11, 000. However, for the hardware specification it was
assumed that all patches in the 600 FOV (-40, 000) require bicubic sub-
division.

Total Number of Patch Subdivision, Ns

The number of patch subdivisions required is proportional to the total
projected area, A, of the patches. Each of the three versions of the basic
algorithm has a different proportionality constant which was determined by
simulation. The three versions are:

40



V)

C

C

C)C

* LLU

Co 0 4
CD 0~ 0- 0

CD -4 ,0

x 0

000

C S-

00

o -o

C)C

o ON Q)r C i 0 C Mt s r r i ~ n 0 o

on - n bL r r u,1 c T C - M 0 Ci0 n

-441



C

C:C

0~ 0 .4-

1.1 C.

E

S.

-
0

- Ed

c. LOl Cd

- 0

* -- 4

C))

*n %D tD 0- 00 L S.,0 4m qr-* U) 10k , 000 C

- ~ j m -c bk o a Dm c n k ,0 N CDlCj - n k l

4 -4 -4- " - - C.J C~ C"J(\ C C\J C'.j

S3HJiVd JO i38wflN

42



V)

LAJ

LJJ

Lf)

C0 oL :

LO ,

M C) CD

oD u

0.cCa

I- 0 4J1LL

-- 4

o 4.

oo D_

C):
0 CD - ~

0CD .- -

0 R h l 7 a O imChO N )a a N-i Nmm %C

0 mWD_______ -WaD___________ 14 R r % c qt %

'-4 0 4 ___ i m __Lo%__ o s r C 4 -_OJCn I a

0 I D C r c 0 q o C4% D" Q-4L lM t.- l
0 c rt v l nk % - r c 0 %a NC

S3)U A b8,

II I I I I I I I I I I I I I 43 I

0m



LAJ

0L
x
0)
C)

LO&

<- -4

C)1
o t-r

-4

LaJ 
-4

C)0 x 'cr 4:

F-9

-) Ln ) :

00

CDJ

C)

C)_

C=)
0D
0O

-44



* Binary subdivision with quadrilateral grid test

* Binary subdivision with box test

* Quaternary subdivision with quadrilateral grid test

Each of the three versions was simulated with a set of patches at different
distances. The number of patch subdivisions and Z-buffer accesses and the
projected patch area were gathered for each patch. These statistics were
plotted in scatter plots and analyzed for each algorithm version and patch
orientation with respect to the viewpoint (Figures 20, 21, and 22). From
these the constants of proportionality that link the total number of subdivi-
sions and Z-buffer accesses for each algorithm to the total projected area
(which is an explicit function of the sensor flight and terrain parameters)
were determined. It is observed that the box test for grid coverage appears
to require many more subdivisions than other versions (using quadrilateral
test for the 45' patch orientation case).

Assuming that all patch orientations are equally likely, the results were:

r 1. 5A (Quaternary)

N = 1. 3A (Binary with qiadrilateral test)

2. 2A (Binary with box test)

Note that these are equivalent two-way subdivisions (one quaternary sub-
division is computationally equivalent to two binary subdivisions). The total
projected area is derived in Appendix C and is given by:

2 2 t") 2

.- m [.,, 1+ - m ," tn (+) rad

wh.re ' is the height of the view-point. Undur simplifying approximations,
this becomes (see Eq. C-15, Appendix C):

A 2 12 Gm]

raster points, which explicitly shows the ,ffect of 0 , the terrain rouphn(ss
parameter.

45



10
4

Li,

L 10

10 
2

I--

000v10

10 I I I I I

0.0 1.000 2.000 3.000 4.000 5.000. 6.000

NUMBER OF SUBDIVISIONS/UNIT AREA

0 PATCH ANGLE = 450

0 PATCH ANGLE = 900

Figure 20. Scatter Plot of Projected Area--Binary
(Quadrilateral Test)

46



104

0

L. 03

00

io

102 n

10 I I I I I

0.0 1.000 2.000 3.000 4.000 5.000 6.000

NUMBER OF SUBDIVISIONS/UNIT AREA

0 PATCH ANGLE = 450

o PATCH ANGLE = 900

Figure 21. Scatter Plot of Projected Area--Binary (Box Test)

47



v).

!04

Li.J

0-" 103 I

C--

C

10 I I I

O. e 1.000 2.000 3.000 4.000 5.000 6.019C

NJUMBER OF SUBDIVISIONS'LNIT 'AREA

'> PATCH ANnLF = 450

0 PATCH ANGLE = 9oo

Figure 22. Scatter Plut of Projected Are -- Quat(,rnarv
(Quadrilateral T e.s:t)

.t8



Assuming 9m 150 for a worst case terrain roughness, a vertical FOV
v = 30 0 gives a projected area:

V2

A = n2 [2.27]

which implies that a rough terrain, on the average, can have more than two
hidden surfaces which map to the same point on the screen. This result
and conclusion are discussed in detail in Appendix C.

As a baseline, the quaternary subdivision with the quadrilateral test was
chosen for further hardware specification. Although binary subdivision
required fewer subdivisions, the resulting data structure would be more
complicated. The number of quaternary subdivisions for the given para-
meters is then given by:

2
N s 1.5 x (1/2)* x 2.27n
s

or

N 1.7 x 10 6/frames

6
for a display resolution of 10 raster points.

Figures 23a, 23b, 23c, and 23d show the predicted projected area vs.
distance curves for various heights and average patch tilts em. Figures
24a, 24b, and 24c show the ratio of the average predicted area to the
average measured area from the simulation for each patch distance, height,
and tilt Gm . Note that the predicted results track the measured results
closely. This is important because the requirements analysis is founded on
the projected area equations.

Number of Z-Buffer Accesses

The number of Z-buffer accesses is also a function of the total projected
area. In fact, for both versions of the patch subdivision algorithm with
the exception of the box test, this constant is unity (that is, one Z-buffer
access/unit projected area). This has been verified by computer simulation.
Hence,

The factor 1/2 arises because this is the number of four-way subdivisions.

49

.4



10 5300M

500rn

10004

L

~ 1025000m A/C HEIGHT

10

1)

I-

0 0

S 10-

00-

100 100 NV

DITNET AC-MTR

Fiue 3. lojccdAcav. sanv r 11 0



10 5 300m

10 _

V) 10 3
LU

5000m A/C HEIGHT

2

S 10

C,

e05

10-

102

1000 10000 100000

DISTANCE TO PATCH--METERS

Figure 23b. Projected Area vs. Distance- - 50
m

51



300m

10 4 0rm

10 3

10 i 2  5000m A/C HEIGHT

S 10

CD

1- 1 
1

10- 20

1000 10000 100000

DISTANCE TO PATCH--METERS

Figure 23c. Projected A\rca vs. Distance- -A 10

52



10510 4300m

1 OOOm

103

c--

, 10
LO

LU

0~0

10

lo-

1000 10000 1O00000

DISTANCE TO PATCH--METERS

Figure, 23d. Projected Alra vs. )istan e--9 15"

51



LCC)

L.J

U~U

Id)

C) L)a

- I-

C))

C)J F- C

V3n a _js~
Viny UlJJG~0

54)



L(12

C))

CD

LUJ

LUJ

4ID

0 )
im

Lin.

-4 0

0~a

~ G)

C:~

CNJ 4-

V3biV O3d()SV3W

VJdV Q]1JIU]1d

55-



CD co
C0
0)
0 w

LAU

I CQ)

LU S

C) 0)

o C
-4 

C

00

o) Lo 0

C:) C:)

V38JV O)~fsv'Iw

V38V' 031IOQJd

56



NZ = A for all algorithm versions, except,

1. 72A for box test (0 patch orientation)

For the rough terrain parameter assumed,

6
NZ - 2.27x 10

REAL-TIME IMPLEMENTATION REQUIREMENTS

Figure 25 shows the storage and throughput requirements for the various
functional units of the system, based on the analysis described in the
preceding section. It should be noted that these requirements are conser-
vative, based on worst case requirements in most instances.

Implementation requirements were specified for each functional block of
Figure 25. The approach taken was to assume fully parallel computation
and to use pipeline architectures where possible for the individual blocks
and from block-to-block. In a fully pipelined system, the throughput is
determined by the slowest part of the pipeline.

Field-of-View (FOV) Memory

The FOV Memory provides temporary storage for terrain elevation samples
for all potentially visible patches. All patches for the mission are stored
in a mass memory such as a magnetic disc. However, access to mass
memories is too slow for the pipelined Register Square Processor, so the
FOV Memory is necessary. The contents of the FOV Memory are continually
updated as the aircraft flies across the terrain. A maximum of about 500
patches must be added and subtracted for each new frame. Approximately
one terrain elevation sample of 16 bits is required for each patch.

The FOV memory is organized like a toroid in that addresses which exceed
the physical size of the memory wrap around and begin again at the initial
addresses. This organization allows for rapid scanning of all patches within
the FOV and easy updating with new patches as the aircraft moves across
the terrain.

Once every frame, the terrain elevation data are scanned out of the FOV
Memory and processed by the Register Square Processor.

57



w -:

C CD

m -

CD c

C a13

CDC

La.2 :2 a

58



Register Square Processor

The Register Square F..ocessor subsystem is a pipelined processor which
converts all relevant terrain patch data into bicubic form in image screen
coordinates for subdivision and display.

The separate functional units of the Register Square Pipeline Processor are
shown in Figure 26. The first block (Stage 1) transforms the terrain ele-
.ation samples to perspective space. The required calculations are shown
in Figure 27. A pipelined hardware implementation of this function is
shown in Figure 28.

The pipeline contains nine multipliers, nine adders, four registers, and two
dividers and requires five clock cycles for execution. The throughput is
determined by the slowest operation, the divide. Assuming a conservative
16-bit divide time of 200 nsec (typical current generation off-the-shelf
device speeds), all 40, 000 terrain samples in a 600 FOV can be projected
in 8 x 10 - 3 sec. Inputs to the projection hardware, in addition to the terrain
samples, are aircraft position coordinates, heading, roll, and pitch. The
outputs are the terrain elevation samples expressed in image screen
coordinates.

To determine the bicubic patch coefficients, it is necessary to collect the
terrain elevation samples in overlapping groups of 16 samples/patch. This
is the function of the next stage, called the circular buffer (Stage 2). For
each patch, the 16 sample vectors defining the patch are used in Stage 3 to
determine the bicubic fit coefficients, which in turn are used in Stage 4 to
compute the "register squares. " The register squares are the quantities
used in the patch subdivision.

ROM)[ T r, I (CLA B CFB

Fc'v IfMOR DATA UFE F SQU ARES ' .

STAQE I STAGE 2 STAGE S'AGf 4

Figure 26. Functional Elements of Register Square Pipeline Processor

59



ul

-4

<0 0 0 r

>< >- N4- - - = L

-4 C\J M

o -1 a

-4 CC. < ><N
r4 0 .4(JC~aaO

>: >; *c:*,
NJ 0

>~ >

(A>< >- f14JL

LLJ F -h
UC L )

0.. - C ()

C) .0.m U

V)->

C
oC1

0L
m U

C14

60



x

:0=

z 
R

Y 0 A - X .... fr

23 --- - - J

zoz

* R DENOTES REGISTER

Figure 28. Pipeline Hardware Block Diagram
for Perspective Projection Stage

61



The computations required for the bicubic fit coefficients are described in
Appendix A and are summarized in Figure 29. This stage requires the
multiplication of the 4 x 4 array of 16 projected terrain sample vectors
surrounding each patch by a constant 4 x 4 matrix M (premultiplication)
and its transpose (post multiplication).

A pipelined hardware approach to the bicubic fit (Stage 3) is shown in Figure
30. Each x, y, and z component requires 32 identical modules, each
consisting of four multipliers and three adders. Sixteen registers are also
required for the 4 x 4 constant matrix M. Six clock periods are required
for completion of each patch. Again, the throughput rate is conservatively
estimated at 5 x 106 patches/second.

The output of the bicubic fit stage consists of a 4 x 4 matrix A. There is an
A matrix for each of the three components. The elements of the A matrix
are denoted a...

The next step (Stage 4) consists of computing the 16 register square entries
from the aij for each of the three components. The definitions of the
register square entries are shown in Figure 31 and are derived in Appendix
B. A pipelined implementation of this stage is shown in Figure 32. A total
of 27 adders and 49 registers are required for parallel implementation.
Each patch requires four clock periods.

In summary, the Register Square Processor performs the functions of
perspective projection and the fitting of the bicubic polynomial to the terrain
samples. The output is in the form of three arrays of 16 numbers which are
used directly by the succeeding bicubic subdivision algorithm. This pro-
cessor is fully pipelined and can process an FOV of 40, 000 patches in
8 msec. The hardware required consists of 393 multipliers, two dividers,
327 adders, and 72 registers.

Register Square Stack

The outputs from the Register Square Processor, as well as the previously
subdivided patches which require further subdivision, are stored in a memory
called the Register Square Stack until they can be processed by the Patch
Subdivider. This memory can be organized as either a first in-first out
(FIFO) or last in-first out (LIFO) stack.

62

- a h-



BICUBIC FIT

PATCH OF INTEREST

ADJACENT PATCHES

mII m14 z11 z14 1 m11 m41

L 4 1  m 44 z4 z 44 m 1 4  m 4*4x4

M 7 MT
(4 x4) (4 x4) (4 x4)

Figure 29. Bicubic Fit

63



7M T MzM T

z 11 b1 1 n =

4 1
z 2a

HI 
Ia 1S2

I I I11

I I 'I bIo ~
14 H4i

I~ I i

-~b44I h44

-- - - - - - - - - - - - -

I#16 I32

FiueI0 P e in Bicic i lc iga

64

mom'I



(0,1) (1,1)
4 e 4 f 4 4 i 4 j

a4j Z a2j  Z r z aij jZ1(3alj+a2j

j=1 1i1= j=1

h 4 k 3(3a1 1+a2 1 )3a41 + a42 3a21 + a 22 (3a i+ai 2)

1=1 +(3a 12 +a22)

a4 m
a4 4  a24 ai4 3a1 + 24

b4 o
a42 a22 a2 3a1 2 + a22

(0,0) (1,0)

Figure 31. Register Squares Prior to Subdivision

It is difficult at this time to predict the size of the stack needed. It will be
a function of the input rate of the patches, but, more importantly, it will be
the rate at which subdivided patches are returned for further subdivision.

The total memory capacity required is given by

Ttl 16 16 3 number of patches in the
Tt -x x x

(Register (Bits) (x, y,z) stack at a given time

Squares)

In the worst case, assume that one patch fills the FOV. The worst case
enumerates the subdivision tree breadth first. Since the 106 terminal
patches do not go back to the stack, all nodes of the quaternary tree have
to be stored. Thus, 4/3 x 106/4 = 0.33 x 106 subpatches may be in the
stack. Hence, the maximum size is 0. 33 x 10 6 x 768 = 256 megabits.
Using 64K bit random access memory (RAM) chips devices, this memory
requires 4000 integrated circuits. These can be arranged into blocks to
reduce the input-output (I/O) speed requirement of each stage. Note that
this is the upper limit. It is quite possible that the memory requirement
can be substantially less than this. This can be verified by Monte Carlo
simulations.

65



ax~l 9 x

42 + + R R 01

R x2 x 00a
310 2a

x xli

X 10 J m

all

a22"

R x2

324
2 3 

+ R R f

142 +b

a24

a
22

Figure 32. Register Squares Pipeline

66



PATC' "I VIDER

The algor- 'r ,r Lch subdivision is described in Appendix B and is shown
in Figi . . No hat subdivision produces nine 2 x 2 register squares
from ti .... .,r 2 x '  iste. squares of the parent patch. The nine new
register squares uped to provide four new sets of register squares
correspc ding to the i, subpatches.

Figures 34a and 34b show the parallel hardware implementation of the sub-
divide algorithm. It requires 93 adders and 318 registers. With this degree
of parallelism, four clock periods are required for subdivision of a bicubic
patch x(u, v), y(u, v), z(u, v). For a clock period of 100 nsecs, three patch
subdivision pipelines are required.

Tester

After subdivision, each subpatch is tested to see whether it should be further
subdivided or passed on to the Display Processor. The present test criterion
is that the patch in question should surround one, and only one, display grid-
point. Patches which surround more than one gridpoint are returned for
further subdivision.

Two alternatives to approximating the projected patch for the grid test have
been considered: the quadrilateral and box approximations (Figure 13).

The box approximation, as can be seen, tends to overestimate the number
of grid points surrounded by the patch but results in a simpler implemen-
tation. Figures 35 and 36 show the implementation of the box grid test.

For maximum throughput, four grid testers are required for each Patch
Subdivider, for a total of 12.

Display Processor and Z-Buffer

The Display Processor is a pipelined processor that determines the tone
or intensity for each display subpatch and assembles the picture. In the
picture assembly process, any priority conflicts are resolved point-by-
point using the Z-buffer.

f

67



00

_- - a

co

00

04 '

* 0 E -

+E 0
.- ~ U)

0
- -4

cc 00

+0 +

cocl

• 0ra -. -. tf

- (N += . .4 a U

w. . co .. cc

+4 .4 -.---- +0 .

0+. .C .0-
0r 0 4-+

-. 4 ..i .0

0.-- 0. .0

-. +

+ + + I 0 (

68

L:J m 0 cc. - -4 ('
-co* 40

- S I (('4 '0- ~ - (4

E.

('-468



SUBDIVIDE i'ATCH (PAPT 1)

R q

011

0 021 NdOTE: SUBSCRIPT IDENTIFIES OtIE

OF FOINR NEW REGISTEP

SQUARE VALUES IN ONE
OF0 NINE NEW REISTER01? SOUARES, DENOTED BY CIRCLEO

2

4 V V 12

021

m

Figure 34a. Subdivide Pipeline Part I

69



SUBDIVIDE PATCH (PART 2)

4 012

h M~ R~ 02 2

b4 ~ - - R12

C G)~-K ~ 21

d 4RRH 022

m 11J ~

0 - - -- § 021~

p - 022

Figure 34b. Subdivide Pipeline Part II

70



X x.
LiI I.J

C)

- C

C) CDn

L~CL
- L.J0

C, ED,
x x 0

710



---- Z
L.J m m

Lf

I.- C-
co L

cuca

Li

V V )

co m
I' C,

I ~L)

I Ir

F5

72



The Z-buffer is a memory containing the distance to each displayed subpatch
as well as its tone or intensity. Priority conflicts are resolved by comparing
the distances to the two subpatches in question. The subpatch which is closest
is entered into the Z-buffer and the other is discarded. Two Z-buffers
allow readout of one frame to the display while the next frame is being
assembled.

Thirty-two parallel channels are required for the Z-buffer. This estimate
is based on the estimated requirement for approximately 2. 3 x 106 intensity
computations every frame. This results in an intensity computation every
14.5 nsec.

Assume that dense MOS memories will be used for these memory-intensive
stages, with 180 nsec access times and 300 nsec cycle times. Consequently,
the Z-buffer and intensity buffer updates will take

180 nsec Read

40 nsec Compare

300 nsec Write

520 nsec Total

The update speed required is 14.5 nsec/updat.-. Thus, the number of
memory channels needed is

520 nsec
- 36

14.5 nsec

Each of the 36 channels will address a specific sector of the display screen.
Pixels will we assigned to one of the 36 channe.s on the basis of x, y. screen
coordinates.

The intensity computation is a function of the angles between the LOS. the
sun and the patch normal, and the texturc function and an atmospheric
attenuation term based on patch distance. The texture function is deter-
mined by table look-up, using the patch ground coordinates for addressing.
The intensity computation pipeline is shown in Figure 37. This processor
requires 29 multipliers. 18 adders. 76 registers, and two table look-up
read-only memories (PRONIS) per channel.

73

-.



-4

74-

---W

[ [ ,4--

. .)

74



Only seven channels of intensity computations are required. The intensity
computation is pipelined and the pipeline clock rate is 10 MHz, so that the
effective throughput rate/channel is 107

The required throughput pixel rate is about 2. 3 x 3 x 10 7/second, resulting
in a need for seven parallel channels. This is the product of the number of
pixels/frame (106), the number of frames/second (30) and the additional
factor (2. 3) to account for extra computations from conflicts (Appendix C).

The total parts count for the system, excluding the host computer and mass
memory, is contained in Table 1. This count also does not include control
circuitry, multiplexers, etc., whose specification requires a more detailed
design. Allowing 1000 devices for these additional functions, the total parts
count is approximately 9000. Of this total, approximately two-thirds
consist of memory devices, including 4000 64K x 1 devices for the Register
Square Stack. As discussed previously, this estimate is probably
conservative, but improvement requires further analysis by Monte Carlo
simulation.

TIMING ANALYSIS

Figure 25 showed the throughput requirements in each stage of the pipelined
processor in terms of tfe number of principal operations for each stage.
These requirements are reflected in the subsequent estimation of the through-
put and hence hardware requirements for each pipelined stage. The impli-
cation is that the pr',liminary architecture discussed supports the system
throughputs shown in Figure 25. This subsection addresses the total
transport delay in the pipelined cascaded stages.

The total transport delay is reckoned from the real time FOV memory to
display. This measures the time elapsed from a new platform position
input (from the flight simulator) to the display of this new position on the
screen.

The transport delay T D is the sum of the individual pipelined stage delays:

T =T + T + T + T+T
D BEG STACK SUB TEST DISP

75



200

0 x X

x20

un 42

c: c

o ~1 0
24 -

N Cc



where

TRE G  = delay through register square computation,

TSTAC K = delay through the stack,

TSU B  = delay through the patch subdivision,

"TEST = delay through the tester,

and TDISP = delay through the display processor

Each of these delays is estimated below.

TREG: Referring to Figure 26, this includes projection, circular buffer,

bicubic fit and register square computation. The projection (Figure 28)
requires five basic stages (subtract, multiply, two adds and a divide) of
delay. Assuming 200 nsec of delay per stage (corresponding to the worst
stage--the divide), this implies 200 x 5 = 1 Lsec. The circular buffer adds
a further delay of four rows of patches: 200 x 4 x 200 nsec = 160 4secs.
Here we have assumed 200 nsec/patch and 200 patches/row (corresponding
to 40, 000 patches in the FOV). The bicubic fit has a delay of six stages
(Figure 30), or 6 x 200 nsec = 1.2 "see. The register square pipeline
(Figure :32) has a delay of four stages (800 nsec).

Hence T 1 + 160 + 1.2 + 0.8 = 163 secs.

REG

TSTACK: This is basically the delay associated with the buffering of he

patches, and is variable, depending on the size of the patches received
(range to the patch). The worst case delay occurs when the stack fill.
up with patches and the succeeding pipelines are busy and cannot accept
patches from the stack. This upperbound is I frame time C13 msec), i.e.,

TSTAC K = :0 rnsec (max)

TSUB: The subdivide pipeline entails a total delay of eight staips (see

Figures 344 and :34b), or 1. 6 _s(ecs at 200 nsec/st.Lge

T S = 1.6 ,sees

77



TTEST: This consists of the gridpoint test (Figures 35 and 36) or eight

stages at 200 nsecs/stage

Hence TTEST = 1. 6 secs

TDISP: The intensity computation pipeline involves (Figure 37) 17 stages

at 200 nsecs, or

TDISP = 3.4 tsecs

Hence, the total worst case transport delay

= 163 + 33,000 + 1.6 + 1.6 + 3.4
T D

= 33, 169. 6 nsecs

Bounding off to the nearest larger frame time, the worst case transport
de lay

TD = 2frametimesl

- 78j



SECTION V

CONCLUSIONS AND RECOMMENDATIONS

The principal conclusion of this study is that real-time implementation of
the approach is feasible for aircraft visual and sensor simulations. The
hardware requirements are not unreasonable, although it seems that they
could be significantly reduced through additional iterations of the design
tradeoffs. In particular, the Register Square Stack member which was
conservatively sized at 256 megabits, could be substantially reduced.

Improvements could be made in the test to determine whether a subpatch
should be displayed. The number of patch subdivisions could be reduced to
the point where perhaps only one Patch Subdivider pipeline would suffice if
subdivision was not required to single picture element size.

Since the number of patches to be processed for fixed patch size increases
as the square of the distance, it would be desirable to use variable patch
sizes. Distant patches need not be as small as nearby patches where greater
detail is necessary. This would not only provide variable resolution as a
function of viewing distance but would reduce the size of the FOV Memory.
Together with the previous suggestions for improving the grid test, this
would also reduce the size of the Register Square Stack. The primary
obstacle is the possibility of edge effects and artifacts where patches of
different sizes are juxtaposed in the image plane.

Some hardware reduction may be possible in the Register Square Processor.
With a fully pipelined design, the duty cycle of this stage is only 25 percent.
Since it basically consists of a sequence of 4 x 4 matrix multiplications,
some time-sharing of hardware may be possible. This stage is also a prime
candidate for exploiting very large scale integrated circuit (VLSIC)
technology.

Further work should be done on the Display Processor. The computation
of tone or intensity, including the representation of texture, is by no means
optimized at this point.

79

hh. -_ _ _ __ _ _ _



Finally, more work is required on anti-aliasing with this approach. Some
anti-aliasing is inherent in the averaging of texture, based on projected
patch size. However, this approach still exhibits severe aliasing problems
along the horizon and along any boundary which separates a cultural object
from a terrain surface patch.

An anti-aliasing approach has been under investigation at Honeywell for
anti-aliasing with the bicubic subdivision algorithm. First, note that area
sampling, i. e., averaging of patch contributions, is needed only at an
object's silhouette boundaries where multiple surface contributions have
to be averaged. This is because texture aliasing can be eliminated by
prefiltering the texture pattern on a patch depending on its distance from
the observer (farther patches are filtered more than the nearer ones).
Therefore, point sampling the filtered texture can be used everywhere
except at object or terrain silhouettes. In fact, this texture filtering is
already performed implicitly in the current implementation of the Honeywell
terrain representation program on STARS at AFHRL (by having several
levels of texture detail and choosing the level corresponding to the patch
distance). Hence, texture aliasing can be eliminated by adaptive texture
filtering in real time before the patches are subdivided and tested.

Further, subpatches which come from silhouettes can be recognized by
their surface normals (which are orthogonal to the line of sight). Hence,
pixels wnich correspond to the silhouette edges can be treated separately
from all the rest, and multiple surface averaging applied only at these
pixels. Because the silhouette pixels comprise only a small fraction of
the image, this insight results in a greatly simplified anti-aliasing algorithm
for object space (depth buffer algorithms).

As explained above, texture prefiltering on each patch eliminates the need
for area sampling everywhere but at the silhouette pixels. Hence, the
unmodified point sampling version of the algorithm is applied to all patches
(and subpatches) which are not tangential. iowever, tangential (silhouette)
subpatches are treated differently. If a tangential subpatch is mapped to a
certain pixel, the Z-buffer entry corresponding to the pixel is not compared
or replaced with the new subpatch. Instead, a tangential subpatch arriving
at a pixel signals that the point is a potential silhouette point. The current
content of the Z-buffer is replaced with a pointer to a linked list which will
contain information about the current and future contributions to that pixel.
The current contents of the intensity buffer and Z-buffer for this pixel and
the information from the new (silhouette) patch form as the first two elements
of this list. At the end of the first pass, all nonsilhou'tte points are complet,ly

80

1q



determined. Moreover, the information from all surfaces--the area
(A), depth (Z) and intensity (I) is available in the linked lists for each
potential silhouette pixel. This is then used to perform averaging and
priority determination for the silhouette pixels.

The above approach satisfies the following goals for efficiency:

1. The expensive multi-surface area sampling is done only for
the potential silhouette points, eliminating the jagged edges.

2. The use of linked lists for storing information on the sil-

houette points eliminates the need for multiple frame and
Z-buffers, and uses only as much memory as needed to
store the silhouette information.

3. Texture prefiltering enables the computationally simple
(conventional) point sampling algorithm to be used almost
everywhere in the image, without texture aliasing.

81



APPENDIX A

BICUBIC SPLINE INTERPOLATION

82



APPENDIX A

BICUBIC SPLINE INTERPOLATION

Currently, polygons are used to represent terrain elevation in computer-
image generation. Approximation of terrain with polygons produces a
faceted effect and a silhouette made of straight-line-segments. Curved
surface segments or "patches" can be used instead of polygons. If the
patches can be joined together with slope continuity, a picture of the
surface can be made continuous both in shading and silhouette.

The most widely used nonlinear representation is the bicubic spline, an
extension of the cubic spline interpolation for functions of one variable.
In general, a spline curve is a piecewise analytical function whose pieces
are chained together with continuity requirements on the first few deriva-

tives imposed at the joints. The pieces are basic curve shapes with
adjustable parameters for each piece. These parameters are chosen to
satisfy the imposed continuity requirements. Polynomial curves are
usually used for the pieces. The cubic polynomial f(u) = au3 + bu 2 + cu + d
is the lowest degree polynomial with a sufficient number of parameters to
provide continuous differentiability.

A curve in space can be represented in parametric form by the vector
equation

x (u)

r(u) y(u)

Lz (u) J

where each of the components can be represented by a cubic defined for
the parameter u in the interval. Usually, for convenience, 0 ' u < 1. In
matrix notation, each of the cubics can be expressed as

a

f (u)[u3 u2 U 1 b

Ld

83



A surface patch is a function of two variables u and v.

F 0i, v) [y(u, v)

Terrain elevation data is single-valued and is provided in the DM\A data
base as z(x,y) over a (nearly) uniform mesh xi, Yi- By associatinr x - u
and v-. v, the parametric representation of onlN the vertical comnponect
z(u, v) is n, eded.

The matrix notation for z(u, r) is

a a a aIJ
11 12 1: 14 v1~~)[3 2 2

z(u, V) u u 1 a2 1  a 2  a, 3  a 4  v

a.. a a k'
'31 a3 a 3 ' 34

a41 a42 a43 a44 1

uA v

wher( the a.. are coefficients of the eqwition just as a. 1, c, nnd (I \,re
in the univaAat,, case. The problein is to find the coefficient,.

Following C rtmul1[1 ] , onl local ne(thods w, I ,I hIc )nsider'. i ,. , 1.:
datum onl\ affects the coefficients of nearthv patches.

One method, using an ari ay of 16 s znples of , (u, v), mi ht sim ultaneousir
solve the resulting linear system of equati)nw in the iknoii ;ii 'IThi
method Aouh! result in a bicubic patch which \. ould ra: ., thromi h a I tht.
data points :ind lnt(,rpolnte the stirfacf. I It.,,n. In atioii) t 1
coniputzitionaily undesirable, this niethod wNoild r' :-;ult in ' uif:.c, tht
would be discontinuous in th, first d. rivntive t he 1Vt(h houtd;11i# .

8,1

I



Consider again the univariate equation. F ur data samples, say fl, f 2,
f3 ' f 4 , cre required to determine the four coefficients a, b, c, d. The
coeffici, nts can be related to the data samples by some 4 x 4 matrix M

a f

b f2

c - f

d f4

LdJ 4

Therefore, K
f

This concept can be trivially extended to the bivariate case:

7zl1 12 zI', z14

z(u,v 3uu]M -222 M v v v i

zU 2 233 34

z41 ":42 z43 z44

=u 7L Z Mv

N ,ti that A - 7 \T For the c': s coris- 1 red earll er of I:ttitiv ,i( uj

th r)Lluh 16 p t _ the rnatrix M 1i %, g uv n I),,

-9

18 -45 6 -9 2I
1 -11 1 9 2

2 9 0 0

8,5



This technique circumvents the need to solve a system of 16 linear equations,
but the problem of discontinuity in the derivative of the surface at the patch
boundaries remains.

THE B-SPLINE

The cubic B-spline provides an alternative which provides continuity of the
second derivative. In general, except when the points are collinear, the
B-spline does not interpolate the data samples but rather approximates
them. This property provides some smoothing of the input data samples.
Consider the four points fl" f2P f3P f4

f .f

0 1 U -.

A cubic curve segment can be generated which does not pass through any of
the points. Similarly another segment of curve can be generated using the
points f 2 ' f 3 " f4 , and a fifth point f 5 which connects to the first segment
with second derivative cortinuity.

f JOINT

86



For the B-spline cubic, the matrix M is derived from a set of basic functions.

The weights of the bq.ic functions are chosen to satisfy the continuity

conditions, resulting in:

-1 3 -3 1

3 -6 3 0

2 -3 0 3 0

L1 4 1 0

There are some interesting geometric properties of these piecewise curves.

They lie everywhere within the convex hull of the polygon of the defining

vertices. At u = 0 or u = 1, the curve passes through a point P which is the

1/3 point of the median of the triangle formed by three sequential vertices.

The first derivative vector at P is:

fi+ 2  f f

2

and the second derivative vector at P is Pi t (f -f ) + (f i f )fi+ (+2 fi+

ff "+f

.i+2

P it

87



When the three vertices f., fi+ 1 l f1+2 are collinear, then the triangle is
degenerate with P on the line. The tangent vector P' and second deriva-
tive P" are also along the line.

B-splines have the "variation diminishing" property which means that they
approximate linear functions exactly, as demonstrated above, and the
approximation is always "smoother" than the function it approximates.

THE CATMULL-ROM CUBIC SPLINE

This spline interpolates the data points and has continuity of first derivative
at the joints. Consider the four points fl, f2' f3# f4

f 3

0U *

A cubic can be generated that interpolates from point f2 to f 3 " Consider a
fifth point f 5 "

f 3
f2

JOINT
ff 4 f 5

1 f4

U "

88



Another segment of curve is generated using f 2 , f3 , f4, f 5 . The two segments
join with first derivative continuity. For the Catmull-Rom spline, the
matrix M is

-1 3 -3 1

2 -5 4 -1

3 -1 0 1 0

0 2 0 0

89



APPENDIX B

BICUBIC SPLINE SUBDIVISION

9

90



APPENDIX B

BICUBIC SPLINE SUBDIVISION

The binary bicubic spline subdivision algorithm described here is an
adaptation of an algorithm developed by E. Catmull in his thesis published
in December 1974 entitled, "A Subdivision Algorithm for Computer Display
of Curved Surfaces. " Catmull develops an algorithm for subdividing a
cubic patch and its first derivatives in two orthogonal directions and
discusses computational requirements for the algorithm.

CUBIC SUBDIVISION

Consider the cubic function

f() =a T3 +b 2 +C T+d

which is valid for t - h < T!9 t + h. By adding f(t + h), the value of f at the
center point is given by

f(t) = [f(t - h) + f(t + h)]/2 = h 2 (3at + b) (B-)

= [f(t - h) + f(t + h)J/2 - g(t)

The correction term

g(t) = h 2 (3at + b) (B-2)

can also be expressed in terms of its values at the ends of the interval

g(t) = [g(t - h) + g(t + h)]/2 (B-3)
th s

Also note that, if h is the width of the n interval, at the (n+1)st binary
subdivision hn+1 = n /2 andn+1 gn

gnl n(114 (B -4)



Equations (B-1) through (B-4) provide the basis for the cubic spline sub-
division algorithm described below. Using matrix algebra notations,
define

n1(T) f ::(T j (21
gn-l (2x 1)

0 1 0 12(2x4)

4( (2x2)

Then to scale the correction term for the subdivision in progress, form

c (') = c (7) 1
-n / n-I Ln_1)4n

To compute the function and correction term for the center point of the
interval, T 1 T 5 '2'

T1 
+  '2 cn(l) [f( ) + f('r 2)/2 - [gn (T) + gn (r 2)]/2

c (_ __ Q1 (13-5)-- n 2-

-~n  ( 2 )  [n('r) + gn(r2)1/

Pr-'ause the elements of H and Q are powers of 1/2, a binary search of a
cubic spline is computatinally r'educed to shifts and adds. This desirable
property carries over into subdivision of a bicubic spline function.

92



D-0500 HONEYWELLSYSTEMS AND RESEARCH CENTER MINNEAPOLIS MN F/6 t.$II REAL-TIME FEASIBILITY FOR GENERATION OF NONLINEAR TEXTURED0 T7ERR-4ETC(U)
IJAN 81 D SOLAND, M VOTH. P NARENDRA F33615-77-C-003T CI UNCLASSIFIED AFHRL-TR-79-27 ML22EEEEEE

MENN *.hhhhi:7 D_



BICUBIC SUBDIVISION

As described in Appendix A, the bicubic spline for a terrain patch can be
described by the surface

z(u, v) = u,1MZ M, v (B-6)

where u'= u 3u2 uj; 0 <gu c1 

= v v ; !! vs1

(u, v) are independent variables (corresponding to the orthogonal coordinates
(x, y) for the bicubic surface within the patch; the prime denotes a trans-
pose. M is a (4 x 4) matrix of second derivatives, and Z is a (4 x 4) matrix
of surface elevations surrounding and including the patc9 in question, i. e.,

z = z z(x., Y.

where, if 1 : i and i ! 4, the terrain patch in question is bounded by

x2 3x x 3

Y2  y ! y3 "

To develop the extension of the subdivision algorithm to two dimensions,
define

A = M Z M' (ajI (4x4)

and consider the vector

s'(u) u' A [si 's 2 s 3 s4]

with s (4-i)

5 u a..

ThenThe (u V v (4-j) s (B-7)

j=1 j

93



For constant v, each si. is a cubic in u which has a correction term g,
associated with it. In particular, s(u, vo ) has the correction term

g(u, v) = v 0 4-jAg(u) (B-8)

j=1

For constant u, both s(u o , v) and g(u o , v) are cubics in v. Hence each has
its own correction term, say cs(u, v) for s and c (u , v) for g. Following

Catmull, these four functions can e arranged in g "register square:"

Vl

s(u, v) g(u, v)

C (u, v) c (u, v)
g

Moving in the v direction, c5 corrects s, and c g corrects g. Conversely,
in the u direction, g corrects s and c corrects c s . Based on the cubic
subdivision algorithm described prevously, these functions are explicitly

4 (4-j) 4 (4-i) 2 4 (4-j)
s (u, v) Fv T u a. g (u, v) h v (3ua a

j1 i=u j=1

2 4 (4-i) 22
c (u,v) h ?u [3vai +ai] c (u,v) = h h 3v(3ual1 +a~l)

i=l

+ (3ua 1 2 + a 2 2)3

In particular, the register squares corresponding to the corner of the
terrain patch prior to subdivision (h = h = 1) are given by:

u v

94



(0,1) 4 4 4 4 4 (1,1)
7 a E aj y F a.. Z (3alj +a)

jjl 4j j~l i=j j=1 iJ -3

4 3(3a 1 1 + a 2 1)
3a41 +a42 3a21 +a22 (3al + ai2 +(3a +ai=1 12 22

4
a 4 4  a 2 4  E 3a 14 + a24i=1 ai4

4
a42 a22 F 3a + a

(0,0) i=l a i
2  12 22 (1,0)

With these preliminary definitions, the bicubic subdivision algorithm can
be expressed in matrix notation as follows. For any patch or subpatch, let
the register squares for the corners of the patch be described by a set of
(2 x 2) matrices in the form

(n-1) C (n-i)C01 ,1

(n-i) (n-i)
00 10

In preparation for subdivision, the correction terms in each register square
are first scaled by the operator

H= (10

to produce scaled register squares

(n) (n-1) H
k9

95

iw



Subdivision will produce a (3 x 3) block of (2 x 2) register square matrices
of the form

(n) (n) (n)
C 01 Cf, C11

(n) (n) (n)
C Ci C

(n) (n) (n)
C CC
-00 0 4,0

In terms of the subdivision operator,

the new register squares resulting from the bicubic subdivision are then
given by

(n) (n) (n) (n) (n) (n)

(n)

(n) 01 (n) 1 1
C Q (n) ; C Q (n

-0, C00

(n)

(n) (n) (n) C, I

C [C (nQ)C [=[ O0 C.' (n)

CC4,0

96



Any of the four resulting distinct sets of four register squares can then be
subdivided by repretion of the algorithm.

To close with an example, suppose a4j = j and a2j = (5-j). Then

(0) 10 10 (0) 4 1
C1= , CO0015 15 C0 2 3

(1) 10 5/1 (1) 4 1/41oiL ii' -o -- 6
- 0 5/4 15/16 1/2 3/16

(1) 49/8 13/16Co -
7/8 9/16

It is worth noting that the off-diagonal correction terms in C decrease as

4 -n, and the diagonal correction term decreases as 1 6
- n . Ihis fact can

perhaps be used to reduce the computational load by easing into a linear
interpolation (i. e., stop updates of the correction terms) after a few sub-
divisions in the binary search have been performed.

Surface Derivatives

In addition to searching the surface of the bicubic patch for an intersection
with the LOS, the first derivatives of the surface are also required to
compute the direction cosines of the surface normal at the point of inter-
section and thereby the reflected intensity for a given sun angle.

If one considers the cubic and its derivative

3 9)

f(0) =-a r + b r2 +c +d

f(r) = 3a 2 + 2b +c

the derivative at the center of the interval t - h < i t + h can be
expressed as either

97



f (t) = [f(t+h) = f(t-h)] / (2h) -ah
2

T

or

f (t) = [f (t-h) + f (t+h)] / 2 - 3ah 2  (B-9)
T T T

Catmull suggests the former approach, but the latter is more attractivc
for the two-dimensional subdivision algorithm because the same subdivision
algorithm can be used for the surface derivatives as for the surface. More
importantly, the algorithm based on the first equation requires that the four
patches bounding the patch in question be subdivided simultaneously. For
example, along an outer boundary such as u = 0, computation of s u (0, v)
requires knowledge of s(-hn, v), which is not contained in the patch being
subdivided.

Proceeding as in the case of the surface subdivision, and using Equation
(B-9) as the basic one-dimensional algorithm, consider the first derivative
in the u direction:

24 (4-j) 3
s (u, V) [3u 2u 1 0A v -- v E (3-i)

u j=1 i=1 ( 4 - i ) u( a.= i]i

For constant v, s (u, v ) is a cuadratic in u with correction term

4 (4-j)
gu(Uv )= 3h Z v au o u o alj

j=1

On the other hand, for constant u, both su(uo, v) and gu(uo, v) are cubics
in v and have the appropriate cubic form for the correction coefficients.

Based on these observations, the initial set of register squares for the u
derivative of the terrain patch can be quickly determined.

98



Register Squares for s (u, v) PatchU

(0, I) 4 4 4 3 4 (,I

Sa 3 a . E (4-1)aij 3 E a1 j
=13j j=1 i=1 j=1

3
3a31 +a 3 2  3(3al1 +a1) 1 (4-i)(3ail +a i2) 3(3a +a i2)

3
a34 3a14 Z (4-i)ai4 3a14

i=1

3
a3 2 3a 12 (4-i)ai 2  3a 1 2

(0,0) (1,0)

A similar consideration of the v derivative of the surface, sv(u, v), yields a
set of register squares which are similar to those for su(u, v) but with the
(i, j) indices interchanged, the C kttransposed, and the diagonal C inter-
changed.

Register Squares for s (u, v) Patch(0, 1) _______ v (1,1I)
3 3 4 3 3
Z (4-j)a4 j  f (4-j)a2 j Z E (4-j)aij z (4-j)(3a1j + a2j)

j=1 j =11~ =1 j=l 2

4
3a 3a 3Za 3(3a +a

211 j i 1 11 21

4

a4 3  a23 ai3 3a13 +a23

4
3a41 3a21 3Z ai1  3(3a 1 1 + a 2 1 )

(0,0) j=1 11, 0)

99



APPENDIX C

PROJECTED AREA OF A PATCH AT THE SCREEN

100

Alm-



APPENDIX C

PROJECTED AREA OF A PATCH AT THE SCREEN

The first step is to derive a key relationship between the orientation of a
patch, relative position of the observer, and the projected area of a patch
at the screen. Much of the further analysis is based on this relationship.

The imaging geometry is shown in Figure C-1. The patch is approximately
at a distance 'f from the observer (who is in the C-7 plane). The observer
is at height C retative to the patch. The normal to the patch makes an
angle e with the vertical, and its projection on the 1-n plane makes an angle
¢ with the axis (cylindrical notation). The line-of-sight makes an angle 8
with the horizontal. The patch size is h x h.

For a flat terrain, the projected area of the patch in angular subtense at
the screen is given by:

Area cos A rad2 (C-1)
n 2

where A is the angle made by the line-of-sight vector with the patch
normal n.

Now. cos A = nwhere:

= [cos , 0, sin 8]

and n = [sin ecos 0, sin e sin 0, cos 9]T

Then:
cos A = [sin $ cos 8 + cos 0 sin a cos 0]. (C-2)

Substituting (C-2 into C-i):

2
Area = -. [sin 5 cos e + cos s sin e cos ] (C-3)

101



0~0
L03

C).

4-,

Cl-)

102,



For small , the observation angle can be approximated by:

sin I/n

cos 1

Similarly, sin e - and cos 9 - 1 for small 9.

Hence the area of the patch becomes:

Area h2  + 9 cos 0 ](rad2 (C-4)

Equation (C-4) gives the projec'ed area of a patch at a specific tilt orienta-
tion (9, 0), distance Tf, and relative height from the observer. In practice,
of course, patches can have different tilts 9, orientations 0, and heights
with respect to the observer. Hence, to find the average projected area of
a patch at a given distance, statistical models of the parameters e, t,
and C have to be generated. This statistical model gives rise to a means
of characterizing the terrain roughness.

TERRAIN ROUGHNESS MODEL

The terrain is composed of square patches (of side h) each with an angle e
to the vertical, an anale o to the vertical plane containing the patch and the
observer, and height,' below the observer (Figure C-i). Note that e denotes
whether a patch is tilted, and ¢ determines whether it is tilted toward or
away from the observer. The following assumptions can be made about the
distribution of 9, 0 and C over the entire field of view:

* 9, 0 and { are independent random variables

9, ¢ and C are stationary processes in the field of view--that is,
the distribution of the parameters is not a function of the location.

It can be further assumed that 6 is uniformly distributed between 0 and 2 T.
This means it is equally likely that the observer is looking at a patch from
any direction of the compass. The distribution of 9, the tilt of a patch to
the vertical, need not be completely specified. It is completely characterized
for purposes of this analysis by its mean value Gm' Finally, C is assumed
to be a normal random vwriable with mean mc and standard deviationc- .

m and a are measured over the significant region of the field of view.

103

. .-- ...



The terrain roughness is then completely characterized by 9m, the average
5,13pe of a patch, and a , the standard deviation of the patch elevations over
a small area.

TIIE AVERAGE AREA OF A PATCH AT DISTANCE X

F:1roina the terrain roughness model, the average area of a patch in
.quation (C-4) is computed by integrating over the distributions of 8, ¢
and 4. Since these parameters are assumed to be independent, the order
of integration is immaterial.

The result in equation (C-4) is first averaged over all possible orientations
of the observer with respect to the patch. Since each orientation , is
equally likely, the probability density of t is:

P(¢) ( 0 < 0 < 2 T-
=~ T (C-5)

0 elsewhere

Since the "back" of a patch must be subdivided if it is visible, negative
areas (of a patch facing away from observer) should be counted as positive
areas. Therefore, the average over 0 should be written:

E [area] = - E + 8 cos t (C-6)

where . denotes absolute value, and E [ ] denotes expected value or
average.

Note that as ¢ varies from 0 to TT, cos ¢ takes on values from between +1 and
-1. Therefore, the above quantity is difficult to evaluate in closed form
unless the specific value of C/ is known. Instead, Schwartz's inequality
gives:

E [area] ! . + E cos (C-7)

which gives an upper bound (conservative estimate) on the area.

104



17/
Now: 8 EL 0 8 /2 cos c d ¢ (C-8)0ow 01s = 2TT -T12

2 e

2
TT

Hence: E [area] =-3 J! +-7. - 8 radJ (C-9)

Since this equation is linear in 0, averaging over all possible e and
assuming 6 has a mean value of 6 gives:m

2 2 (rad2)

[area] + i +- 6 = A (C-1O)

Note that the first term in the above equation corresponds to the flat earth

case. The second term modifies the result for a rough terrain.

DISTRIBUTION OF PATCH PROJECTED AREAS

Equation (C-10) gave the average projecto -trea of a patch at a distance r
and relitive height ' from the sensor. To compute the total projected area
at the screen :1ae to all the patches in the PFOV, the distribution of the patch

distances must be determined--that is, how many patches are at a given

distance from the observer. The number of patches in the strip d at a

distance 'I is given by:

p(d - H d7 (C-1f)
h2

The total projected area is obtained by integrating (C-10) and (C-l1) over

the near and far distancei in the FOV, that is:

105

e i_



42

A(, 2  f 2  A(1)p(l)d

= + 4 m 4 Ln rad2

Because Z 2 > > equation (C-12) can be written as:

A2( + - m L n (C-13)
1 2 H TT m e H n

The projected area is, of course, a function of the near distance -' (the
distance to the bottom of the FOV). Th, worst case is when the horizon is
at the top of the screen as shown in Fig,'re C-2. Then the vertical field of
view determines tl because from Figure C-2, v = C/I

Figure C-2. Imaging Geometry for the Worst Case

106



Then equation (C-13) becomes:

A = v ] 1 + 2 n 4

A ~'~1 LT( ) (C-14)
v

Assuming an nxn element raster over the FOV (*v *H the area in
number of raster elements is given by:

A = n 2 1 - rn ( Ln (C-15)

Equation (C-15) explicitly shows the total projected area for a rough terrain
when the entire field of view is covered with the ground patches. In the flat
earth case, it is obvious that A = n 2 which is intuitively correct. With rough
terrain (em > 0), because of hidden surfaces more than one point on the
ground maps to the same point on the screen. This is the reason why the
total projected area can be greater than n 2 raster elements. To see how
rough terrain affects the quantity in equation (C-15), assume tl " 500 m,
t 2 = 20 km, and a vertical field of view *v = 300. Table C-I shows the
total projected area as a function of em, the roughness parameter.

Table C-1 shows that for em = 15 (extremely rough mountain terrain) the
total projected area is 2. 27 times the corresponding result for the flat
earth case because of hidden surfaces.

TABLE C-1. AREA VS. en-I

@I A/n 2

m

0 1

2 1.16

5 1.39

7.5 1.59

10 1. 78

12 1.94

15 2.27

107

. .. . ..- 1



AP'NDI\ D

NUMVBER OF PATCHES N Ei' kBIC I C SVBDIVISION

1 08



APPENDIX D

NUMBER OF PATCHES NEEDING 13ICUBIC SUBI)IVISION

As discussed earlier, the number of potentially visible patches in the field
of view is very large (200, 000 to 400, 000 to a range of 50 miles). Hfowever,
not all these patches have to be subdivided to render them on the display.
Whether or not a patch has to be subdivided depends on its projected area
in terms of the number of screen grid crossings it covers. If it covers more
than )ne screen grid intersection, it has to be subdivided. Furthermore, as
mentioned in the discussion of the project and subdivide approach, it may
:)e desirable to use the bicubic subdivision algorithm on only the nearer-in
patches which span a large number of screen grid intersections. More
distant patches may be subdivided using a linear subdivision. This saves
the '%pensive real-time bicubic fit and register square computation on the
large number of patches which can be subdivided using linear subdivision.
Ilere, the relationship is quantified between the number of patches which
require bicubic subdivision and the sensor, terrain, and flight parameters
which affect this number.

:\ssume that a patch will be subdivided using bicubic subdivision if its
projcted area (in terms of grid intersections) is greater than m. Let *m

be the distance at which a patch subtends on the average, m picture grid
points. The number of patches in the field of view up to tm is given by thc
tquation to be:

2

- , (1)-I)
m 2h-

The screen grid intersections subtended Ly a patch i., a fun. tion of the
resolution of the sensor and the tilt of the patch with respect to the ob-ser,'er
and .the distance to the observer. In Appendix C, the average projected area
(in aripular subtensc) of a patch was:

9 9)

,h' 2 m (rad2) (C-10)

I 0j



Where: h is the size of the patch;
is the distance to the observer;
is the height of the observer relative to the patch; and

em is the "average" slope of the patch with respect to the
horizontal, a function of the terrain roughness.

At large distances and rough terrain, the second term in Equation (C-10)
dominates the first term, that is:

2
h 2 m 2

*r 8 radj (ID- 2)

The number of screen grid intersections is given by:

A
M = AT 2(D-3)

d*

Where dt is the resolution of the simulated sensor. The distance 'tm at which
a patch subtends m screen grid intersections is given by equations (D-2) and
(D-3) as:

1 h2  2

m 1 8 (D-4)
dr t 17 m

m

From which:

289_h m,2

hm (D-5)
m d* mT

The number of patches B in the field of view at a distance less than 4m
is given by (D-1) and (D-41 to be:

B M. (1D-6)
m dt2 rrm

110



If *H/d* = n, (the number of resolution elements in a line of the display),
Equation (D-6) can be rewritten as:

B - 1 n2  (D-7)m m 1 (
The result in Equation (D-7) is interesting because it explicitly shows the
dependence of Bm on the surface roughness (em), horizontal field of view
(PH), and number of display elements (n 2 ). For a sensor with 6 0

and assuming a typical rough terrain of 8 = 100, Bm 212000/m is
derived from Equation (D-7). If the threshold m = 5, only 21200 patches
have to be subdivided using the bicubic subdivision algorithm; that is, the
bicubic fits and register squares must be computed in real time on these
patches. The remaining patches in the field of view can be subdivided
linearly.

At this time, no subjective simulation results have been obtained as to the
largest value of m which will not produce artifacts due to the linear inter-
polation. A factor m = 5 appears reasonable, especially in view of the
conservative 1000 x 1000 display resolution assumed.

111
* U1 GUSII PINTING O IC: 19R1- 771 -oSS/1lO


